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1 Rotating a function about the origin

1.1 Rotating a point

In order to rotate a function about the origin, one must first use elementary geometry to

rotate singular points. Let (x, y) be the point we wish to rotate an angle of θ counter-

clockwise about the origin to a new point (x′, y′). We may assign d to be the distance

between the point and the origin, at an angle of α to the positive x-axis before rotation and

an angle of α+ θ after rotation.

(x, y)

(x′, y′)

α

θ

d

d

d sinα

d cosα

d sin (α+ θ)

d cos (α+ θ)

Using the addition formulae for sin and cos we can expand both d sin (α+ θ) and

d cos (α+ θ) in order to get an expression for both x′ and y′.

d sin (α+ θ) = d cosα sin θ + d sinα cos θ

= x sin θ + y cos θ
(1)

d cos (α+ θ) = d cosα cos θ − d sinα sin θ

= x cos θ − y sin θ
(2)

From (1) and (2), one can then see that (x′, y′) = (x cos θ − y sin θ, x sin θ + y cos θ).

1.2 Rotating a curve

As we now know how to rotate a singular point about the origin, we may extend to a curve.

A curve is simply a collection of points and so we may think of a method that applies our

previous technique for singular points to each point in this collection. We can do this using

parametric equations. For a curve, y = f(x), one can map both the domain and range to

two separate parametric equations.

3



y = t sin θ + f(t) cos θ (3)

x = t cos θ − f(t) sin θ (4)

We can assume f(t) to be polynomial for now, and let t ∈ R. Now, if we plot this

parametric curve using our two equations, changing θ would rotate each point on the curve,

and thereby rotate the whole curve.

1.3 Example of rotation

We can visualise an example using y = sinx. This can be done using any graphing software

such as Desmos.
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Figure 1: θ = 0
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Figure 2: θ = π
6
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Figure 3: θ = π
3

Note the difference between Figure 2 and Figure 3, although you cannot verify, you can

see that Figure 2 remains a true function, while Figure 3 does not. One can test for a

function via the vertical line test. If you can draw a vertical line that intersects the curve

more than one time, it is not a true function.
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2 Maintaining realness

2.1 Requirements for realness

A function must have a single output for every input. The relations which are functions are

one-to-one and many-to-one. Other relations are displayed below.
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Figure 4: One-to-one
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Figure 5: Many-to-one
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Figure 6: One-to-many
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Figure 7: Many-to-many

In order for the function to remain real, it must be either one-to-one or many-to-one,

this means that the parametric equation representing our domain, x = t cos θ − f(t) sin θ,

must be a one-to-one function. This implies that the function must be either an increasing

function or a decreasing function. However, we may encapsulate both of these statements

by requiring the function to have no stationary points.
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2.2 Satsifying those requirements

In order for the function to have no stationary points, the derivative function must have no

roots.

x = t cos θ − f(t) sin θ

dx

dt
̸= 0

=⇒ cos θ − f ′(t) sin θ ̸= 0

=⇒ cos θ ̸= f ′(t) sin θ

=⇒ cot θ ̸= f ′(t) (5)

For all t ∈ R, (5) must be satisfied in order for the function to remain real after being

rotated θ about the origin.

2.3 Proof: No function has full real revolutionary freedom

For a function to have a full range of revolutionary freedom, it must be rotatable for all

0 ≤ θ < 2π. The function cot θ ranges over all real numbers for this domain, see Figure 8.

This means that our condition established in (5) cannot be satisfied for any f(t) as there

will always be an intersection between f ′(t) and cot θ.

−6 −4 −2 0 2 4 6 x

y

−4

−2

0

2

4

Figure 8: y = cot θ

This can be extended to rotation around any point (a,b). If we rotate f(x) from (a, b),

when looking at values of θ it can be rotated while being real, it is the same as looking at

the rotation of f(x+ a)− b from the origin. Let g(x) = f(x+ a)− b =⇒ g′(x) = f ′(x+ a)
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The range of f ′(x+ a) is equal to the range of f ′(x) Therefore, rotating from (a,b)

preserves the values of θ for which a function can be rotated while staying real. Therefore,

no function rotated from any point can be rotated fully while staying real.

2.4 Finding the revolutionary freedom of a function

In order to find the revolutionary freedom of a function, we must find all values of θ that

satisfy the condition cot θ ̸= f ′(t) for all t ∈ R.
Let a and b bound f ′(t) so that a ≤ f ′(t) ≤ b.

Therefore, the values of theta which are invalid for rotation are in
{
θ : a ≤ cot θ ≤ b

}
.

We can then take the complement of this set, then intersect it with
{
θ : 0 ≤ θ < 2π

}
.

This intersection is the set of values of θ by which f(x) can be rotated.

We can try this method with f(x) = sin(x). The derivative function f ′(x) = cos(x) is

bounded by -1 and 1. {
θ : −1 ≤ cot θ ≤ 1

}
Intersecting the complement of this set with

{
θ : 0 ≤ θ < 2π

}
, we have

{
θ : 0 ≤ θ <

π

4
,
3π

4
< θ <

5π

4
,
7π

4
< θ ≤ 2π

}
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Figure 9: θ = π
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3 Going Further

Throughout this paper, we have explored the limits to which functions may be rotated while

remaining well-defined. This journey is still far from over, however. We plan on extending

this paper with further ideas including: the analyses of different families of functions and

exploring how the integral of the function changes as it rotates. We shall also be looking

at different applications of rotational freedom, including a study on how rotational freedom

can be used in the agriculture industry for yield optimisations. We hope you have enjoyed

reading this paper and have learned something new or interesting, and encourage you to go

further and extend on this new knowledge.
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